Technology Innovations

Posts Tagged ‘Manufacturing


Scientists at the Indian Institute of Technology (IIT)-Roorkee have fabricated low-cost thin film solar cells by extracting the plant pigments from plums, black currants, and berries.

The team found that the plant pigments are good at absorbing sunlight. According to a study, published in the Journal of Photovoltaics, plant pigments are naturally occurring biodegradable and nontoxic molecules that are extracted using techniques that involve negligible cost to the environment and therefore can provide eco-friendly alternatives to synthetic dyes that are used for thin film solar cells production.

The researchers at IIT-Roorkee extracted the plant pigments using ethanol to create the thin film solar cells. And while the organic thin film solar cells are not yet as efficient as conventional silicon-based solar cells, the team is investigating ways to make them more efficient and cost-effective. Read the full report by Lorraine Chow.

Advertisements

About 9.86 crore people (8%) in India suffer from sinusitis, according to the Government of India’s Union Ministry of Health and Family Welfare. Of these, for the chronic cases who do not benefit from medication, a team of researchers at InnAccel, Bangalore, has developed a device called SinuCare to provide long-term relief within a day.

Sinusitis is a condition in which the openings of the sinuses (the cavities in the bones in our forehead, cheeks, and the nose which form the respiratory tract from the nose into the throat) swell and clog the airflow inside them. The inflammation (swelling and redness) is caused due to infection, allergies, air pollution, or structural issues in the nose. Some of the common symptoms of sinusitis are thick nasal mucus, a plugged nose, pain in the face, fever, headaches, poor sense of smell, sore throat, and/or cough.

Why it matters

In most cases, sinusitis can be treated by medication. However, it is considered as a chronic case if the condition continues beyond three months. To chronic sinusitis patients who fail to benefit from medicines, doctors usually suggest functional endoscopic sinus surgery (FESS) to widen the sinus openings, clear any collected secretions, and to ventilate the sinuses and the nasal cavity. However, FESS is not only an expensive procedure, but is also quite invasive, as it requires surgical removal of many bony structures within the nasal cavity. It, therefore, carries a higher risk of complications and over-ventilation of the sinuses which can hamper its normal functioning.

As per a survey conducted by the InnAccel team, of the total number of sinusitis patients who visit an ENT doctor, on an average nearly 45 percent are counseled for FESS. However, most patients choose to try alternative forms of healing and avoid surgery till the extent it becomes essential. Two major reasons for this that emerged from the survey are: the cost (in India FESS cost ranges from Rs. 60,000 to Rs. 130,000) and the fear of complications or physical damage due to the operation under general anesthesia.

SinuCare

SinuCare is a minimally-invasive balloon sinuplasty device meant primarily to provide chronic sinusitis cases a cost-effective and safer alternative to FESS.

Complete kit of SinuCare

Complete kit of SinuCare

“With SinuCare we have tried to alleviate the concerns of chronic sinusitis patients. SinuCare is a simple metal device that uses a disposable double-balloon dilator, which is inserted into the blocked sinus openings through the nose. When the double-balloon dilator is inflated with saline in the blocked cavity, it expands and remodels the sinus openings, clearing the respiratory cavities by causing tiny bone fractures. Unlike FESS, balloon sinuplasty using SinuCare does not require any tissue removal, thus decreasing the risk of complications that arise from excessive removal of bony tissue and reducing the time for recovery. Moreover, an ENT doctor can operate SinuCare in his or her clinic, thereby reducing the cost of hospitalization for the patient,” explains Dr. Jagdish Chaturvedi, 33, who is a co-inventor of SinuCare.

Dr. Chaturvedi is an ENT specialist in Bangalore. In 2016, he won the MIT Technology Review’s TR35 Award for Young Innovators under 35 for one of his medical device innovations. At InnAccel, he develops new medical devices with cross-disciplinary teams and mentors young researchers and professionals in their entrepreneurial endeavors.

He is now conducting awareness sessions for ENT doctors on the use and benefits of SinuCare. “We have trained over a 100 ENT surgeons across the country and some of these doctors have started counseling and treating patients with SinuCare and the feedback from them and the patients has been very satisfying. I am also travelling to various cities to perform surgeries and train doctors on how to use SinuCare,” he adds.

Double-balloon sinuplasty with SinuCare

(L-R) Dr. Jagdish Chaturvedi gives SinuCare training to ENT doctors on a 3D model of the sinuses. On the right, he is conducting double-balloon sinuplasty using SinuCare on a patient in Kolkata.

The InnAccel team has filed a patent in India for SinuCare. They have also applied for the CE (European Union) quality certification for the device.

How it works

SinuCare comprises a navigation system through which the doctor manually inserts a soft polymer double-balloon dilator into the nose, to unclog the openings of blocked sinuses.

When the double-balloon dilator reaches the target, the doctor infuses the balloons with saline at 12 atmospheric pressure with the help of a pressure pump. As the balloons expand to their maximum diameter of six millimeters, they remodel the sinus opening and allow the mucus to drain out from the cavity, giving way to better ventilation. Finally, the dilator is removed and the device is pulled out of the patient’s nasal cavity.

The procedure is repeated for each blocked sinus. Following the complete procedure, the doctor keeps the patient under observation for an hour as a precautionary step to watch for any bleeding or dizziness. It takes about four to five hours for the entire procedure to complete, from the time the patient is given anesthesia to the clearing of the sinuses to when the patient is advised to go.

Key Differentiation

Unlike existing balloon sinuplasty devices which use a guidewire for inserting the balloon dilator into the nose till it reaches a clogged cavity, SinuCare has provisioned for ENT doctors to mount their endoscopic camera for a clear view of the sinuses and blockages. A guidewire is a polymer wire that is put alongside/inside the dilator to allow the doctor to feel the sinus blockage. However, it increases the cost of the device, the number of components it comprises, and the skill requirement to carry out the procedure.

The other key different feature of SinuCare is that its guiding system is a reusable product. The double-balloon dilator is the only disposable material in SinuCare whereas other sinuplasty devices are completely disposable. Without the dilator, SinuCare can be completely sterilized for reuse, enabling reduction of the total cost of the device for the doctors as well as that of the overall treatment.

Currently, SinuCare is being recommended and used by co-inventor Dr. Sunil Narayan Dutt, world renowned Otolaryngologist and Head of ENT at Apollo Hospitals, Bangalore and by Dr. P.S. Pradeep Kumar, Founder and Medical Director, Meenakshi ENT Specialty Hospital, Bangalore. They have been contributing feedback in the making of SinuCare.

The product is being packaged as a kit that comprises the main device, three dilators, and a pressure pump. SinuCare kit is priced at approximately Rs. 30,000 for the ENT doctors, and the treatment cost ranges between Rs. 40,000 and Rs. 60,000.

Next Step

While the guiding system of SinuCare has been designed and manufactured in India, the disposable double-balloon dilator for it, also designed in India, is being contract manufactured by Surmodics in Ireland. “We want Indian manufacturers to come forward and create good quality products for us. Under the government’s Make in India initiative, we are trying to manufacture devices in India – one for giving business within the country and second to minimize the cost. The manufacturing scope is big in the field of medical devices. However, we are yet to see innovative manufacturers who are willing to work with a development team, experiment with business models and to give the same quality as foreign suppliers,” says Pooja Kadambi, the team’s lead engineer and co-inventor who has significantly contributed in designing and manufacturing of SinuCare.

ENT doctors, patients with chronic sinusitis, and manufacturers can write to Dr. Jagdish Chaturvedi at jagdishc@innaccel.com or call 080-40923864.


Bulbh1

Bulbh: A micro-USB powered light

Bangalore-based Aditya Agarwal (23) has created a coin-sized micro-USB powered 1.2 watt white LED bulb, called Bulbh, that emits twice the light than a one watt compact fluorescent light (CFL) bulb.

Created and designed at Aditya’s startup My Dream Bird, the Bulbh is a small, slim, micro-USB powered light that has a light emitting capacity of 120-130 lumens as compared to 60 lumens per watt of a CFL and 12-17 lumens per watt of an incandescent lamp. It can be used as an emergency light, a cycle light, night light, in wardrobes, for photography, or as a helmet light.

This September Aditya plans to launch Bulbh in a ‘buy one, donate one’ model where every Bulbh that is sold online, one unit will get donated in India to the communities that are still using incandescent bulbs to reduce their cost of living.

Why it matters

The traditional incandescent yellow light bulbs are much less efficient than other types of electric lighting; they use less than five percent of energy into visible light, converting the rest into heat. Though the manufacturing cost of incandescent bulbs is less, its low light emitting capacity and high power consumption factors have led the European Union, China, Canada and United States to consider phasing it out. India too is slowly moving towards banishing the incandescent bulbs.

As incandescent lamps phase out, light-emitting diodes (LEDs) that are being assembled into a light bulb. Like incandescent lamps, and unlike CFL lamps, LEDs come to full brightness without the need for a warm-up time. They have a lifespan and electrical efficiency that is significantly better than the rest.

The LED lamp market is projected to grow multi-fold over the next decade, to $25 billion by 2023 (see source). Aditya’s Bulbh taps into this emerging market.

Speaking of the micro-USB powered light, he says, “The Bulbh can be powered by any micro-USB chord that can be connected to a power source such as a mobile device adapter, a power bank, a personal computer or a laptop. It has been ergonomically designed for use in various conditions and emits bright light. It is specifically targeted for mobile phone users of the world who already have micro-USB adapters.” This is a large user base. According to a report, the number of mobile phone users in the world is likely to reach almost 5.3 billion by 2017.

The Bulbh

The Bulbh: Inside out

The Bulbh: Inside out

To make Bulbh emit light uniformly in all directions, the product has been given a custom casing of silicon and thermoplastic alloy. The casing also prevents Bulbh from heating up, even after 24 hours of continuous use. A tiny circuit of LEDs lies inside the enclosure.

To achieve the color rendering index (CRI) of 80, which is equivalent to any CFL, and twice the lumens per watt than a CFL, Aditya has created Bulbh by using six 0.2 watt Everlight LEDs, each with a capacity of emitting 24 lumens of light. All LEDs have been placed in a series on an aluminum-core printed circuit board that maintains the circuit temperature uniformly.

The circuit comprises a dedicated high-frequency DC-DC converter that operates as a constant-current source. There is provision for high switching frequency that regulates the amount of inrush current and prepares the circuit for a soft start. This also prevents the circuit from over-voltage, short-circuit and over-temperature incidents.

On the outside, each Bulbh is fitted with a neodymium magnetic base so that the users can stick it on any metal surface. Initially, My Dream Bird plans to provide two extra magnetic stickers with the product so users can stick it to metal, stone wall, wood, ceramic or glass.

With its coin-sized smooth form factor, Bulbh looks sleek. The tiny lamp, with a rounded shape similar to that of an Indian sweet called ‘batasha’, is just 0.6 inches in height and 1.3 inches in width, and weighs between 30-35 grams.

Buy One, Donate One

As Bulbh finds its users in the market, Aditya plans to execute his ‘buy one, donate one’ campaign simultaneously. “The idea of donating Bulbh occurred to me when I saw hawkers in Kolkata selling their goods under candle light. I found out that they do not buy incandescent bulbs or CFLs as they get heated up and they cannot afford LED lights. Hence, for each Bulbh that is sold online, I plan to donate one to such communities and users in India,” explains Aditya. Initially, he plans to sell Bulbh through popular e-commerce channels in the U.S. and the European Union countries.

 

 

My Dream Bird has collaborated with non-governmental organizations such as Goonj, Smile Foundation, Round Table India, and HelpAge India to ensure donated Bulbh lamps reach hawkers, students, underprivileged children and the elderly communities in India.

Next Step

Bulbh will be launched in the U.S. and European markets by September 2015. Once he is able to raise $400,000 funding, Aditya plans to open-source the project.

For more details, contact Aditya at aa@mydreambird.com or visit the Bulbh website.


Series: MIT Design Innovation Workshop 2015

A team of three students, Shreyas Kapur (16) of Modern School, New Delhi, Kaustubh Shivdikar (20) of Veermata Jijabai Technological Institute, Mumbai, and International Institute of Information Technology, Bangalore alumnus Nitesh Kadyan (25), recently created a three-dimensional (3-D) printer that can print using fabric.

As part of the Smart Textiles track at the recent 2015 MIT Design Innovation Workshop, the team has developed a prototype of the 3-D fabric printer using the RepRap open-source hardware and software.

Prototype of 3-D Fabric Printer by Team Squeeshy

Prototype of 3-D Fabric Printer by         Team Squeeshy

3-D Printing

3-D printing is primarily a process that is used to make a three-dimensional object. The printer uses additive manufacturing over the traditional subtractive manufacturing.

In subtractive manufacturing, the excess material is milled or subtracted using a milling machine to get the desired shape. In additive manufacturing, however, the 3-D printer produces successive layers of the desired material under computer control until the entire object is created, preventing wastage of material. The objects printed by a 3-D printer, therefore, can be of almost any shape or geometry.

The Prototype

The focus of the Smart Textiles track at the MIT Workshop was to reimagine “the seamless integration of textiles with electronic elements like micro-controllers, sensors, and actuators”. Even though the use of 3-D printers is now being explored in several areas such as healthcare, automobiles, manufacturing, food, and consumer goods, using the technique to print fabric samples is a less explored area as of today.

With the prototype, the trio explore a mix of 3-D printing and conductive thread that can allow users to print circuits inside wearable fabric. On a simpler and lighter note, the 3-D fabric printer could allow users to print soft toys at home!

How It Works

The process of 3-D printing comprises three stages:

  1. Creating the 3-D printable design model of the desired object with a computer aided design (CAD) software.
  2. The file of the model is converted into a .STL or .OBJ format that is readable to the printing software.
  3. The converted file is processed by a software called Slicer which converts the 3-D model into multiple thin 2-D layers and produces a G-code that contains instructions tailored to a 3-D printer.

Once the G-code is generated, the 3-D printer lays down successive 2-D layers of the input material (plastic, resin and even food pastes like chocolate) to create the 3-D model from a series of cross sections. This laying down happens in different ways for different materials. For example, plastic requires a heating extruder to melt it and extrude, while resin requires a laser beam to cure it. The layers, which correspond to the virtual cross sections from the CAD model, are joined or automatically fused to create the final shape.

 

Nitesh Kadyan at the 2015 MIT Design Innovation Workshop

Nitesh Kadyan at the 2015 MIT Design  Innovation Workshop

To create the 3-D fabric printer prototype, the team has followed a similar process but instead of using the hot extruder that is used in plastic printing, it used a felting needle which moved up and down through a thick foam base. Here is how the prototype works: the felting needle is connected to wool and the up-down movement pushes the wool inside the foam base. The movement of the base in the 2-D space provides shape to a layer and the process continues til the final object is created. To do this, the team used an old 3-D printer and custom-made a felting needle which used wool as the primary input.

There are multiple use cases for the prototype. “Just imagine if you can print soft toys for your kids at your home. Imagine if you have a washable sensor-based circuit inside your t-shirt which is connected to LEDs to tell you if it’s going to rain or not in your area. Another example could be a health monitoring shirt which can read our pulse rate. All this could be possible if we have a 3-D printer that prints with soft materials like wool or with conductive thread. Possibilities are endless,” says Nitesh.

Next Steps
A similar experiment has been done by students at Carnegie Mellon University and by the Walt Disney Company. However, both were proprietary experiments. Team Squeeshy aims to contact the RepRap team and work with them to build the prototype further, improve its felting mechanism, performance and design, and make the project open source.

To contact the innovators, write to niteshkadyan@gmail.com.

This article is part of a series on innovations presented at the 2015 MIT Design Innovation Workshop.


A team of three students, Bisman Deu, Rayvin Thingnam, and Ekambir Singh, has invented “Green Wood” made out of recycled rice husks and straw that could be used an as alternative building material. 

Majority of the world’s population eat rice as a staple food, and the crop dominates cereal production in many developing countries. The threshing of rice produces unwanted husks and straw, and the options for disposal are limited: burning, composting or feeding to animals on the farm. The residues have no commercial value and therefore the farmers end up burning the rice waste – causing air pollution, killing crop-friendly insects and making the topmost layer of soil partially infertile due to loss of nutrients.

As a cost-effective solution to this, the three-member team used rice husks and straw as the raw material, mixed the waste with a resin, and pressed the mixture into particle boards. The new particle boards are fungi- and mould-proof, waterproof, and affordable.

The innovation addresses many challenges such as reducing deforestation and pollution, providing extra source of income for farmers, and providing an environment-friendly, low-cost alternative material for building houses and furniture. Read more

Source: Guardian and Unicef 


Indian-American Sahil Doshi, a ninth grader from Pittsburg, has recently won ‘America’s Top Young Scientist’ award for his innovative design of an eco-friendly battery that seeks to reduce carbon footprint while offering power for household usage. Sahil won the award at 2014 Discovery Education 3M Young Scientist Challenge.

Sahil’s prototype – the PolluCell – converts carbon dioxide into electricity, ingeniously helping to reduce carbon footprint while offering power for household uses. Watch the complete video for a detailed description of his innovation. Read more


Researchers at the Indian Institute of Technology (IIT-Delhi, Bombay and Madras), along with Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland, and Technology and Action for Rural Development (TARA), have created a Limestone Calcined Clay Cement (LC3) that helps reduce carbon dioxide (CO2) emission by almost 30 percent. The team’s innovative cement production process uses the new blend which substitutes up to half of the carbon intensive materials traditionally used to make cement.

The LC3 is a synergetic hydration of clinker (a dark grey nodular material made by heating ground limestone and clay at a temperature of about 1400-1500 Celsius), calcined clay, and crushed limestone to achieve the performance required from commercial cements, with clinker factors as low as 0.40 (as against 74 percent clinker present in the cement that is currently available in the market).

Reduction in the the quantity of limestone and clay that is used to manufacture cement will eventually also mean a little longer life for the limestone mines. According to a report, a LC3 plant is also likely to cost much less than the investment that is required for a clinker based cement factory.

Currently, more than 30 tons of LC3 has been produced and a building has been constructed near Jhansi in Uttar Pradesh, to check the feasibility of the cement in constructions. Now the cement quality has to pass through standardization committee before it is accepted by the industries. As per a report, the research will not be patented and will rather be available to everyone once it has received due clearances. Read more


Enter your email address to subscribe to this blog's new posts by Email.

Join 76 other followers

Visitors Log

  • 10,446 visits till date

Monthly Archives

Advertisements
%d bloggers like this: